/* * libslack - https://libslack.org * * Copyright (C) 1999-2004, 2010, 2020-2023 raf * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * 20230824 raf */ /* =head1 NAME I - abstract locking, rwlocks =head1 SYNOPSIS #include #include typedef struct Locker Locker; typedef int lockerf_t(void *lock); Locker *locker_create_mutex(pthread_mutex_t *mutex); Locker *locker_create_rwlock(pthread_rwlock_t *rwlock); Locker *locker_create_debug_mutex(pthread_mutex_t *mutex); Locker *locker_create_debug_rwlock(pthread_rwlock_t *rwlock); Locker *locker_create(void *lock, lockerf_t *tryrdlock, lockerf_t *rdlock, lockerf_t *trywrlock, lockerf_t *wrlock, lockerf_t *unlock); void locker_release(Locker *locker); void *locker_destroy(Locker **locker); int locker_tryrdlock(Locker *locker); int locker_rdlock(Locker *locker); int locker_trywrlock(Locker *locker); int locker_wrlock(Locker *locker); int locker_unlock(Locker *locker); int pthread_rwlock_init(pthread_rwlock_t *rwlock, const pthread_rwlockattr_t *attr); int pthread_rwlock_destroy(pthread_rwlock_t *rwlock); int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock); int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock); int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock); int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock); int pthread_rwlock_unlock(pthread_rwlock_t *rwlock); int pthread_rwlockattr_init(pthread_rwlockattr_t *attr); int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr); int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *attr, int *pshared); int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr, int pshared); =head1 DESCRIPTION This module provides an abstraction of thread synchronisation that facilitates the implementation of I libraries. I'll explain what this means. Libraries need to be I when used in a multi-threaded program. However, most programs are single-threaded, and synchronisation doesn't come for free, so libraries should be I when used in a single-threaded program. Even in multi-threaded programs, some functions or objects may only be accessed by a single thread, and so they should not incur the expense of synchronisation. When an object is shared between multiple threads which need to be synchronised, the method of synchronisation must be carefully selected by the client code. There are tradeoffs between concurrency and overhead. The greater the concurrency, the greater the overhead. More locks give greater concurrency, but have greater overhead. Readers/Writer locks can give greater concurrency than Mutex locks, but have greater overhead. One lock for each object may be required, or one lock for all (or a set of) objects may be more appropriate. Generally, the best synchronisation strategy for a given application can only be determined by testing/benchmarking the written application. It is important to be able to experiment with the synchronisation strategy at this stage of development without pain. The solution, of course, is to decouple the synchronisation strategy from the library code. To facilitate this, the I type and associated functions can be incorporated into library code to provide the necessary flexibility. The I type specifies a lock and a set of functions for manipulating the lock. Arbitrary objects can include a pointer to a I object to use for thread synchronisation. Such objects may each have their own lock, by having separate I objects, or they may share the same lock by sharing the same I object. Only the application developer can determine what is appropriate for each application, on a case by case basis. I means that the application developer has a mechanism for specifying the synchronisation requirements to be applied to library code. For more details, see I (C). This module also provides an implementation of readers/writer locks which are defined in recent standards but may not be on your system yet. The readers/writer lock implementation originally came from code by Bil Lewis and was then completed and made robust. =over 4 =cut */ #include "config.h" #include "std.h" #include "locker.h" #include "mem.h" #include "err.h" #ifndef HAVE_PTHREAD_PROCESS_PRIVATE #define PTHREAD_PROCESS_PRIVATE 0 #endif #ifndef HAVE_PTHREAD_PROCESS_SHARED #define PTHREAD_PROCESS_SHARED 0 #endif #ifndef HAVE_PTHREAD_CONDATTR_INIT #define pthread_condattr_init(condattr) 0 #endif #ifndef HAVE_PTHREAD_CONDATTR_SETPSHARED #define pthread_condattr_setpshared(condattr, pshared) 0 #endif #ifndef HAVE_PTHREAD_MUTEXATTR_SETPSHARED #define pthread_mutexattr_setpshared(mutexattr, pshared) 0 #endif #if 0 struct Locker { void *lock; lockerf_t *tryrdlock; lockerf_t *rdlock; lockerf_t *trywrlock; lockerf_t *wrlock; lockerf_t *unlock; }; #endif #ifndef TEST #define try(action) { int rc = (action); if (rc != 0) return rc; } #define try_catch(action, catch) { int rc = (action); if (rc != 0) return (catch), rc; } /* =item C Creates a I object that will operate on the mutex lock, C. I and I will call I. I and I will call I. I will call I. It is the caller's responsibility to initialise C if necessary before use, and to destroy C if necessary after use. On success, returns the new I object. On error, returns C with C set appropriately. =cut */ Locker *locker_create_mutex(pthread_mutex_t *mutex) { return locker_create ( mutex, (lockerf_t *)pthread_mutex_trylock, (lockerf_t *)pthread_mutex_lock, (lockerf_t *)pthread_mutex_trylock, (lockerf_t *)pthread_mutex_lock, (lockerf_t *)pthread_mutex_unlock ); } /* =item C Creates a I object that will operate on the readers/writer lock, C. I will call I. I will call I. I will call I. I will call I. I will call I. It is the caller's responsibility to initialise C if necessary before use, and to destroy C if necessary after use. On success, returns the new I object. On error, returns C with C set appropriately. =cut */ Locker *locker_create_rwlock(pthread_rwlock_t *rwlock) { return locker_create ( rwlock, (lockerf_t *)pthread_rwlock_tryrdlock, (lockerf_t *)pthread_rwlock_rdlock, (lockerf_t *)pthread_rwlock_trywrlock, (lockerf_t *)pthread_rwlock_wrlock, (lockerf_t *)pthread_rwlock_unlock ); } #ifndef NO_DEBUG_LOCKERS /* =item C Equivalent to I except that debug messages are printed to standard output before and after each locking function is called to help locate deadlocks. The debug messages look like: [thread id] funcname(mutex address) ... [thread id] funcname(mutex address) done On success, returns the new I. On error, returns C with C set appropriately. =cut */ static int debug_invoke(const char *name, lockerf_t *action, void *lock) { int err; printf("[%lu] %s(%p) ...\n", (unsigned long)pthread_self(), name, lock); err = action(lock); if (err) printf("[%lu] %s(%p) done (%s)\n", (unsigned long)pthread_self(), name, lock, strerror(err)); else printf("[%lu] %s(%p) done\n", (unsigned long)pthread_self(), name, lock); return err; } static int debug_pthread_mutex_trylock(pthread_mutex_t *mutex) { return debug_invoke("pthread_mutex_trylock", (lockerf_t *)pthread_mutex_trylock, mutex); } static int debug_pthread_mutex_lock(pthread_mutex_t *mutex) { return debug_invoke("pthread_mutex_lock", (lockerf_t *)pthread_mutex_lock, mutex); } static int debug_pthread_mutex_unlock(pthread_mutex_t *mutex) { return debug_invoke("pthread_mutex_unlock", (lockerf_t *)pthread_mutex_unlock, mutex); } Locker *locker_create_debug_mutex(pthread_mutex_t *mutex) { return locker_create ( mutex, (lockerf_t *)debug_pthread_mutex_trylock, (lockerf_t *)debug_pthread_mutex_lock, (lockerf_t *)debug_pthread_mutex_trylock, (lockerf_t *)debug_pthread_mutex_lock, (lockerf_t *)debug_pthread_mutex_unlock ); } /* =item C Equivalent to I except that debug messages are printed to standard output before and after each locking function is called to help locate deadlocks. The debug messages look like: [thread id] funcname(rwlock address) ... [thread id] funcname(rwlock address) done On success, returns the new I. On error, returns C with C set appropriately. =cut */ static int debug_pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock) { return debug_invoke("pthread_rwlock_tryrdlock", (lockerf_t *)pthread_rwlock_tryrdlock, rwlock); } static int debug_pthread_rwlock_rdlock(pthread_rwlock_t *rwlock) { return debug_invoke("pthread_rwlock_rdlock", (lockerf_t *)pthread_rwlock_rdlock, rwlock); } static int debug_pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock) { return debug_invoke("pthread_rwlock_trywrlock", (lockerf_t *)pthread_rwlock_trywrlock, rwlock); } static int debug_pthread_rwlock_wrlock(pthread_rwlock_t *rwlock) { return debug_invoke("pthread_rwlock_wrlock", (lockerf_t *)pthread_rwlock_wrlock, rwlock); } static int debug_pthread_rwlock_unlock(pthread_rwlock_t *rwlock) { return debug_invoke("pthread_rwlock_unlock", (lockerf_t *)pthread_rwlock_unlock, rwlock); } Locker *locker_create_debug_rwlock(pthread_rwlock_t *rwlock) { return locker_create ( rwlock, (lockerf_t *)debug_pthread_rwlock_tryrdlock, (lockerf_t *)debug_pthread_rwlock_rdlock, (lockerf_t *)debug_pthread_rwlock_trywrlock, (lockerf_t *)debug_pthread_rwlock_wrlock, (lockerf_t *)debug_pthread_rwlock_unlock ); } #endif /* =item C Creates a I object that will operate on the synchronisation variable, C. I will call C. I will call C. I will call C. I will call C. I will call C. It is the caller's responsibility to initialise C if necessary before use, and to destroy C if necessary after use. None of the arguments may be C. On success, returns the new I object. On error, returns C with C set appropriately. =cut */ Locker *locker_create(void *lock, lockerf_t *tryrdlock, lockerf_t *rdlock, lockerf_t *trywrlock, lockerf_t *wrlock, lockerf_t *unlock) { Locker *locker; if (!lock || !tryrdlock || !rdlock || !trywrlock || !wrlock || !unlock) return set_errnull(EINVAL); if (!(locker = mem_new(Locker))) /* XXX decouple */ return NULL; locker->lock = lock; locker->tryrdlock = tryrdlock; locker->rdlock = rdlock; locker->trywrlock = trywrlock; locker->wrlock = wrlock; locker->unlock = unlock; return locker; } /* =item C Releases (deallocates) C. It is the caller's responsibility to destroy the synchronisation variable used by C if necessary. =cut */ void locker_release(Locker *locker) { if (!locker) return; mem_release(locker); } /* =item C Destroys (deallocates and sets to C) C<*locker>. Returns C. It is the caller's responsibility to destroy the synchronisation variable used by C if necessary. =cut */ void *locker_destroy(Locker **locker) { if (locker && *locker) { locker_release(*locker); *locker = NULL; } return NULL; } /* =item C Tries to claim a read lock on the synchronisation variable managed by C. See I and I for details. On success, returns C<0>. On error, returns the error code from the underlying I library function. =cut */ int (locker_tryrdlock)(Locker *locker) { return locker ? locker->tryrdlock(locker->lock) : 0; } /* =item C Claims a read lock on the synchronisation variable managed by C. See I and I for details. On success, returns C<0>. On error, returns the error code from the underlying I library function. =cut */ int (locker_rdlock)(Locker *locker) { return locker ? locker->rdlock(locker->lock) : 0; } /* =item C Tries to claim a write lock on the synchronisation variable managed by C. See I and I for details. On success, returns C<0>. On error, returns the error code from the underlying I library function. =cut */ int (locker_trywrlock)(Locker *locker) { return locker ? locker->trywrlock(locker->lock) : 0; } /* =item C Claims a write lock on the synchronisation variable managed by C. See I and I for details. On success, returns C<0>. On error, returns the error code from the underlying I library function. =cut */ int (locker_wrlock)(Locker *locker) { return locker ? locker->wrlock(locker->lock) : 0; } /* =item C Unlocks the synchronisation variable managed by C. See I and I for details. On success, returns C<0>. On error, returns the error code from the underlying I library function. =cut */ int (locker_unlock)(Locker *locker) { return locker ? locker->unlock(locker->lock) : 0; } #ifndef HAVE_PTHREAD_RWLOCK /* =item I Initialises the readers/writer lock, C, with the attributes in C. If C is C, C is initialised as a process private lock. Note that this is the only option under I. On success, returns C<0>. On error, returns an error code. =cut */ int pthread_rwlock_init(pthread_rwlock_t *rwlock, const pthread_rwlockattr_t *attr) { #define DMA pthread_mutexattr_destroy(&mutexattr) #define DCA pthread_condattr_destroy(&condattr) #define DL pthread_mutex_destroy(&rwlock->lock) #define DR pthread_cond_destroy(&rwlock->readers) #define DW pthread_cond_destroy(&rwlock->writers) pthread_mutexattr_t mutexattr; pthread_condattr_t condattr; int pshared; if (!rwlock) return EINVAL; try(pthread_mutexattr_init(&mutexattr)) try_catch(pthread_condattr_init(&condattr), DMA) if (attr) try_catch(pthread_rwlockattr_getpshared(attr, &pshared), (DCA, DMA)) else pshared = PTHREAD_PROCESS_PRIVATE; try_catch(pthread_mutexattr_setpshared(&mutexattr, pshared), (DCA, DMA)) try_catch(pthread_condattr_setpshared(&condattr, pshared), (DCA, DMA)) try_catch(pthread_mutex_init(&rwlock->lock, &mutexattr), (DCA, DMA)) try_catch(pthread_cond_init(&rwlock->readers, &condattr), (DL, DCA, DMA)) try_catch(pthread_cond_init(&rwlock->writers, &condattr), (DR, DL, DCA, DMA)) rwlock->waiters = 0; rwlock->state = 0; return 0; #undef DMA #undef DCA #undef DL #undef DR #undef DW } /* =item I Destroys the readers/writer lock, C, that was initialised by I. It is the caller's responsibility to deallocate the memory pointed to by C if necessary. On success, returns C<0>. On error, returns an error code. =cut */ int pthread_rwlock_destroy(pthread_rwlock_t *rwlock) { if (!rwlock) return EINVAL; pthread_mutex_destroy(&rwlock->lock); pthread_cond_destroy(&rwlock->readers); pthread_cond_destroy(&rwlock->writers); return 0; } /* =item I Claims a read lock on C. Multiple threads may hold a read lock at the same time, but only if no thread holds a write lock. On success, returns C<0>. On error, returns an error code. =cut */ static void rdlock_cleanup(void *arg) { pthread_rwlock_t *rwlock = (pthread_rwlock_t *)arg; pthread_mutex_unlock(&rwlock->lock); } int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock) { if (!rwlock) return EINVAL; try(pthread_mutex_lock(&rwlock->lock)) pthread_cleanup_push(rdlock_cleanup, rwlock); /* Wait until there are no active or queued writers */ while (rwlock->state == -1 || rwlock->waiters) try(pthread_cond_wait(&rwlock->readers, &rwlock->lock)) ++rwlock->state; pthread_cleanup_pop(1); return 0; } /* =item I Attempts to claim a read lock on C. On success, returns C<0>. On error, returns an error code. If C is already locked, returns C. =cut */ int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock) { if (!rwlock) return EINVAL; /* Are there no active or waiting writers? */ try(pthread_mutex_lock(&rwlock->lock)) if (rwlock->state != -1 && !rwlock->waiters) { ++rwlock->state; try(pthread_mutex_unlock(&rwlock->lock)) return 0; } try(pthread_mutex_unlock(&rwlock->lock)) return EBUSY; } /* =item I Claims a write lock on C. Only a single thread may hold a write lock at any point in time. On success, returns C<0>. On error, returns an error code. =cut */ static void wrlock_cleanup(void *arg) { pthread_rwlock_t *rwlock = (pthread_rwlock_t *)arg; /* ** Was the only queued writer and lock is available for readers. ** Called through cancellation clean-up so lock is held at entry. */ if (--rwlock->waiters == 0 && rwlock->state != -1) pthread_cond_broadcast(&rwlock->readers); pthread_mutex_unlock(&rwlock->lock); } int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock) { if (!rwlock) return EINVAL; try(pthread_mutex_lock(&rwlock->lock)) /* Queue this writer */ ++rwlock->waiters; pthread_cleanup_push(wrlock_cleanup, rwlock); /* Wait until readers have finished */ while (rwlock->state != 0) try(pthread_cond_wait(&rwlock->writers, &rwlock->lock)) rwlock->state = -1; pthread_cleanup_pop(1); return 0; } /* =item I Attempts to claim a write lock on C. On success, returns C<0>. On error, returns an error code. If C is already locked, returns C. =cut */ int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock) { if (!rwlock) return EINVAL; try(pthread_mutex_lock(&rwlock->lock)) /* Are there no readers and no active or queued writers? */ if (rwlock->state == 0 && rwlock->waiters == 0) { rwlock->state = -1; try(pthread_mutex_unlock(&rwlock->lock)) return 0; } try(pthread_mutex_unlock(&rwlock->lock)) return EBUSY; } /* =item I Unlocks C. On success, returns C<0>. On error, returns an error code. =cut */ int pthread_rwlock_unlock(pthread_rwlock_t *rwlock) { if (!rwlock) return EINVAL; /* Writer releasing lock */ if (rwlock->state == -1) { /* Mark as available */ rwlock->state = 0; /* Signal queued writers if any, or broadcast to readers */ if (rwlock->waiters) try(pthread_cond_signal(&rwlock->writers)) else try(pthread_cond_broadcast(&rwlock->readers)) } else { /* Reader releasing lock */ if (--rwlock->state == 0) try(pthread_cond_signal(&rwlock->writers)) } try(pthread_mutex_unlock(&rwlock->lock)) return 0; } /* =item I Initialises the readers/writer lock attribute object, C. On success, returns C<0>. On error, returns an error code. =cut */ int pthread_rwlockattr_init(pthread_rwlockattr_t *attr) { if (!attr) return EINVAL; attr->pshared = PTHREAD_PROCESS_PRIVATE; return 0; } /* =item I Destroys the readers/writer lock attribute object, C, that was initialised by I. Note that the memory pointed to by C may also need to be deallocated separately. On success, returns C<0>. On error, returns an error code. =cut */ int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr) { if (!attr) return EINVAL; return 0; } /* =item I Stores the C attribute of C into C<*pshared>. On success, returns C<0>. On error, returns an error code. =cut */ int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *attr, int *pshared) { if (!attr || !pshared) return EINVAL; *pshared = attr->pshared; return 0; } /* =item I Sets the C attribute of C to C. On success, returns C<0>. On error, returns an error code. Note that under I, C must be C or I will subsequently fail. =cut */ int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr, int pshared) { if (!attr) return EINVAL; if (pshared != PTHREAD_PROCESS_PRIVATE && pshared != PTHREAD_PROCESS_SHARED) return EINVAL; attr->pshared = pshared; return 0; } #endif /* =back =head1 ERRORS On error, C is set, either by an underlying function, or as follows: =over 4 =item C Arguments are C or invalid. =back =head1 MT-Level I =head1 EXAMPLES A mutex example: #include #include int main(int ac, char **av) { pthread_mutex_t mutex[1]; Locker *locker; errno = pthread_mutex_init(mutex, NULL); locker = locker_create_mutex(mutex); errno = locker_rdlock(locker); errno = locker_unlock(locker); errno = locker_wrlock(locker); errno = locker_unlock(locker); locker_destroy(&locker); pthread_mutex_destroy(mutex); return EXIT_SUCCESS; } A rwlock example: #include #include int main(int ac, char **av) { pthread_rwlock_t rwlock[1]; Locker *locker; errno = pthread_rwlock_init(rwlock, NULL); locker = locker_create_rwlock(rwlock); errno = locker_rdlock(locker); errno = locker_unlock(locker); errno = locker_wrlock(locker); errno = locker_unlock(locker); locker_destroy(&locker); pthread_rwlock_destroy(rwlock); return EXIT_SUCCESS; } A debug mutex example: #include #include int main(int ac, char **av) { pthread_mutex_t mutex[1]; Locker *locker; errno = pthread_mutex_init(mutex, NULL); locker = locker_create_debug_mutex(mutex); errno = locker_rdlock(locker); errno = locker_unlock(locker); errno = locker_wrlock(locker); errno = locker_unlock(locker); locker_destroy(&locker); pthread_mutex_destroy(mutex); return EXIT_SUCCESS; } A debug rwlock example: #include #include int main(int ac, char **av) { pthread_rwlock_t rwlock[1]; Locker *locker; errno = pthread_rwlock_init(rwlock, NULL); locker = locker_create_debug_rwlock(rwlock); errno = locker_rdlock(locker); errno = locker_unlock(locker); errno = locker_wrlock(locker); errno = locker_unlock(locker); locker_destroy(&locker); pthread_rwlock_destroy(rwlock); return EXIT_SUCCESS; } A non-locking example: #include #include int main(int ac, char **av) { Locker *locker = NULL; errno = locker_rdlock(locker); errno = locker_unlock(locker); errno = locker_wrlock(locker); errno = locker_unlock(locker); return EXIT_SUCCESS; } =head1 SEE ALSO I, C =head1 AUTHOR 20230824 raf =cut */ #endif #ifdef TEST #include #include struct List /* identical to list.c */ { size_t size; /* number of item slots allocated */ size_t length; /* number of items used */ void **list; /* vector of items (void *) */ list_release_t *destroy; /* item destructor, if any */ Lister *lister; /* built-in iterator */ Locker *locker; /* locking strategy for this object */ }; /* Unsafe */ #define list_length_test_nolock_macro(list) ((list) ? (list)->length : -1) ssize_t list_length_test_nolock_func(const List *list) { if (!list) return -1; return list->length; } /* MT-Safe */ ssize_t list_length_test_direct_mutex(const List *list, pthread_mutex_t *mutex) { size_t length; if (!list) return -1; if (pthread_mutex_lock(mutex)) return -1; length = list->length; if (pthread_mutex_unlock(mutex)) return -1; return length; } ssize_t list_length_test_direct_rwlock(const List *list, pthread_rwlock_t *rwlock) { size_t length; if (!list) return -1; if (pthread_rwlock_rdlock(rwlock)) return -1; length = list->length; if (pthread_rwlock_unlock(rwlock)) return -1; return length; } /* MT-Disciplined */ ssize_t list_length_test_lock_funcptr(const List *list, lockerf_t *lockf, lockerf_t *unlockf, void *lock) { size_t length; if (!list) return -1; if (lock && lockf(lock)) return -1; length = list->length; if (lock && unlockf(lock)) return -1; return length; } ssize_t list_length_test_lock_funcptr_1test(const List *list, lockerf_t *lockf, lockerf_t *unlockf, void *lock) { size_t length; if (!list) return -1; if (!lock) return list->length; if (lockf(lock)) return -1; length = list->length; if (unlockf(lock)) return -1; return length; } ssize_t list_length_test_separate_locker(const List *list, Locker *locker) { size_t length; if (!list) return -1; if (locker_rdlock(locker)) return -1; length = list->length; if (locker_unlock(locker)) return -1; return length; } ssize_t list_length_test_separate_locker_1test(const List *list, Locker *locker) { size_t length; if (!list) return -1; if (!locker) return list->length; if (locker->rdlock(locker->lock)) return -1; length = list->length; if (locker->unlock(locker->lock)) return -1; return length; } ssize_t list_length_test_builtin_locker(const List *list) { size_t length; if (!list) return -1; if (locker_rdlock(list->locker)) return -1; length = list->length; if (locker_unlock(list->locker)) return -1; return length; } ssize_t list_length_test_builtin_locker_cacheaddr(const List *list) { size_t length; Locker *locker; if (!list) return -1; locker = list->locker; if (locker_rdlock(locker)) return -1; length = list->length; if (locker_unlock(locker)) return -1; return length; } ssize_t list_length_test_builtin_locker_1test(const List *list) { size_t length; if (!list) return -1; if (!list->locker) return list->length; if (list->locker->rdlock(list->locker->lock)) return -1; length = list->length; if (list->locker->unlock(list->locker->lock)) return -1; return length; } ssize_t list_length_test_builtin_locker_1test_cacheaddr(const List *list) { size_t length; Locker *locker; lockerf_t *rdlock; lockerf_t *unlock; void *lock; if (!list) return -1; if (!list->locker) return list->length; locker = list->locker; rdlock = locker->rdlock; unlock = locker->unlock; lock = locker->lock; if (rdlock(lock)) return -1; length = list->length; if (unlock(lock)) return -1; return length; } int main(int ac, char **av) { int errors = 0; int debug; Locker *locker; pthread_mutex_t mutex[1]; pthread_rwlock_t rwlock[1]; if (ac == 2 && !strcmp(av[1], "help")) { printf("usage: %s [debug]\n", *av); return EXIT_SUCCESS; } printf("Testing: %s\n", "locker"); /* ** Note: Debug lockers are not tested by default. Invoke the test with ** av[1] == "debug" to use debug lockers instead of ordinary lockers. ** Local implementation of rwlocks are not tested unless your system ** requires them. */ debug = (av[1] && !strcmp(av[1], "debug")); if (debug) setbuf(stdout, NULL); /* Test mutex lockers */ if ((errno = pthread_mutex_init(mutex, NULL))) ++errors, printf("Test1: failed to perform test: pthread_mutex_init() failed: err = %d\n", errno); else if (!(locker = (debug ? locker_create_debug_mutex : locker_create_mutex)(mutex))) ++errors, printf("Test1: %s() failed (%s)\n", debug ? "locker_create_debug_mutex" : "locker_create_mutex", strerror(errno)); else { if ((errno = locker_tryrdlock(locker))) ++errors, printf("Test2: locker_tryrdlock(mutex_locker) failed (%s)\n", strerror(errno)); else if ((errno = locker_unlock(locker))) ++errors, printf("Test3: locker_unlock(mutex_locker) failed (%s)\n", strerror(errno)); if ((errno = locker_rdlock(locker))) ++errors, printf("Test4: locker_rdlock(mutex_locker) failed (%s)\n", strerror(errno)); else if ((errno = locker_unlock(locker))) ++errors, printf("Test5: locker_unlock(mutex_locker) failed (%s)\n", strerror(errno)); if ((errno = locker_trywrlock(locker))) ++errors, printf("Test6: locker_trywrlock(mutex_locker) failed (%s)\n", strerror(errno)); else if ((errno = locker_unlock(locker))) ++errors, printf("Test7: locker_unlock(mutex_locker) failed (%s)\n", strerror(errno)); if ((errno = locker_wrlock(locker))) ++errors, printf("Test8: locker_wrlock(mutex_locker) failed (%s)\n", strerror(errno)); else if ((errno = locker_unlock(locker))) ++errors, printf("Test9: locker_unlock(mutex_locker) failed (%s)\n", strerror(errno)); locker_destroy(&locker); if (locker) ++errors, printf("Test10: locker_destroy(mutex_locker) failed (%s)\n", strerror(errno)); } pthread_mutex_destroy(mutex); /* Test rwlock lockers */ if ((errno = pthread_rwlock_init(rwlock, NULL))) ++errors, printf("Test11: failed to perform test: pthread_rwlock_init() failed: err = %d\n", errno); else if (!(locker = (debug ? locker_create_debug_rwlock : locker_create_rwlock)(rwlock))) ++errors, printf("Test11: %s() failed (%s)\n", debug ? "locker_create_debug_rwlock" : "locker_create_rwlock", strerror(errno)); else { if ((errno = locker_tryrdlock(locker))) ++errors, printf("Test12: locker_tryrdlock(rwlock_locker) failed (%s)\n", strerror(errno)); else if ((errno = locker_unlock(locker))) ++errors, printf("Test13: locker_unlock(rwlock_locker) failed (%s)\n", strerror(errno)); if ((errno = locker_rdlock(locker))) ++errors, printf("Test14: locker_rdlock(rwlock_locker) failed (%s)\n", strerror(errno)); else if ((errno = locker_unlock(locker))) ++errors, printf("Test15: locker_unlock(rwlock_locker) failed (%s)\n", strerror(errno)); if ((errno = locker_trywrlock(locker))) ++errors, printf("Test16: locker_trywrlock(rwlock_locker) failed (%s)\n", strerror(errno)); else if ((errno = locker_unlock(locker))) ++errors, printf("Test17: locker_unlock(rwlock_locker) failed (%s)\n", strerror(errno)); if ((errno = locker_wrlock(locker))) ++errors, printf("Test18: locker_wrlock(rwlock_locker) failed (%s)\n", strerror(errno)); else if ((errno = locker_unlock(locker))) ++errors, printf("Test19: locker_unlock(rwlock_locker) failed (%s)\n", strerror(errno)); locker_destroy(&locker); if (locker) ++errors, printf("Test20: locker_destroy(rwlock_locker) failed (%s)\n", strerror(errno)); } pthread_rwlock_destroy(rwlock); /* Timing tests */ if (av[1] && !strcmp(av[1], "time")) { List *list, *mutex_list, *rwlock_list; clock_t start, end; size_t i, length; pthread_mutex_t mutex; Locker *mutex_locker; pthread_rwlock_t rwlock; Locker *rwlock_locker; double nm, nf; double dm, dr; double np, mp, rp, np1, mp1, rp1; double nsl, msl, rsl, nsl1, msl1, rsl1; double nbl, mbl, rbl, nblc, mblc, rblc; double nbl1, mbl1, rbl1, nbl1c, mbl1c, rbl1c; printf("Timing: struct attribute accesses with differing MT safety\n"); list = list_make(NULL, "...", NULL); pthread_mutex_init(&mutex, NULL); mutex_locker = locker_create_mutex(&mutex); mutex_list = list_create_with_locker(mutex_locker, NULL); pthread_rwlock_init(&rwlock, NULL); rwlock_locker = locker_create_rwlock(&rwlock); rwlock_list = list_create_with_locker(rwlock_locker, NULL); #define ITERATIONS 10000000 #define TIME_TEST(label, base, basetime, timevar, action) \ start = clock(); \ for (i = 0; i < ITERATIONS; ++i) \ action; \ end = clock(); \ timevar = ((double)(end - start) / (double)CLOCKS_PER_SEC) / ITERATIONS * 1000000000; \ printf(" %-39s %g ns", (label), (timevar)); \ if (!base) \ { \ printf(" (overhead = %g ns", (timevar) - (basetime)); \ if ((basetime) != 0.0) \ printf(" = %g%%", (((timevar) / (basetime)) - 1.0) * 100); \ printf(")"); \ } \ printf("\n"); printf(" Unsafe:\n"); TIME_TEST("nolock/macro", 1, 0.0, nm, length = list_length_test_nolock_macro(list)) TIME_TEST("nolock/func", 1, 0.0, nf, length = list_length_test_nolock_func(list)) printf("\n"); printf(" MT-Safe:\n"); TIME_TEST("direct mutex", 1, 0.0, dm, length = list_length_test_direct_mutex(list, &mutex)) TIME_TEST("direct rwlock", 1, 0.0, dr, length = list_length_test_direct_rwlock(list, &rwlock)) printf("\n"); printf(" MT-Disciplined:\n"); TIME_TEST("null pointers", 0, nf, np, length = list_length_test_lock_funcptr(list, NULL, NULL, NULL)) TIME_TEST("null pointers (1test)", 0, nf, np1, length = list_length_test_lock_funcptr_1test(list, NULL, NULL, NULL)) TIME_TEST("null separate locker", 0, nf, nsl, length = list_length_test_separate_locker(list, NULL)) TIME_TEST("null separate locker (1test)", 0, nf, nsl1, length = list_length_test_separate_locker_1test(list, NULL)) TIME_TEST("null builtin locker", 0, nf, nbl, length = list_length_test_builtin_locker(list)) TIME_TEST("null builtin locker (1test)", 0, nf, nbl1, length = list_length_test_builtin_locker_1test(list)) TIME_TEST("null builtin locker (cacheaddr)", 0, nf, nblc, length = list_length_test_builtin_locker_cacheaddr(list)) TIME_TEST("null builtin locker (1test/cacheaddr)", 0, nf, nbl1c, length = list_length_test_builtin_locker_1test_cacheaddr(list)) printf("\n"); TIME_TEST("mutex pointers", 0, dm, mp, length = list_length_test_lock_funcptr(mutex_list, (lockerf_t *)pthread_mutex_lock, (lockerf_t *)pthread_mutex_unlock, &mutex)) TIME_TEST("mutex pointers (1test)", 0, dm, mp1, length = list_length_test_lock_funcptr_1test(mutex_list, (lockerf_t *)pthread_mutex_lock, (lockerf_t *)pthread_mutex_unlock, &mutex)) TIME_TEST("mutex separate locker", 0, dm, msl, length = list_length_test_separate_locker(mutex_list, mutex_locker)) TIME_TEST("mutex separate locker (1test)", 0, dm, msl1, length = list_length_test_separate_locker_1test(mutex_list, mutex_locker)) TIME_TEST("mutex builtin locker", 0, dm, mbl, length = list_length_test_builtin_locker(mutex_list)) TIME_TEST("mutex builtin locker (1test)", 0, dm, mbl1, length = list_length_test_builtin_locker_1test(mutex_list)) TIME_TEST("mutex builtin locker (cacheaddr)", 0, dm, mblc, length = list_length_test_builtin_locker_cacheaddr(mutex_list)) TIME_TEST("mutex builtin locker (1test/cacheaddr)", 0, dm, mbl1c, length = list_length_test_builtin_locker_1test_cacheaddr(mutex_list)) printf("\n"); TIME_TEST("rwlock pointers", 0, dr, rp, length = list_length_test_lock_funcptr(rwlock_list, (lockerf_t *)pthread_rwlock_rdlock, (lockerf_t *)pthread_rwlock_unlock, &rwlock)) TIME_TEST("rwlock pointers (1test)", 0, dr, rp1, length = list_length_test_lock_funcptr_1test(rwlock_list, (lockerf_t *)pthread_rwlock_rdlock, (lockerf_t *)pthread_rwlock_unlock, &rwlock)) TIME_TEST("rwlock separate locker", 0, dr, rsl, length = list_length_test_separate_locker(rwlock_list, rwlock_locker)) TIME_TEST("rwlock separate locker (1test)", 0, dr, rsl1, length = list_length_test_separate_locker_1test(rwlock_list, rwlock_locker)) TIME_TEST("rwlock builtin locker", 0, dr, rbl, length = list_length_test_builtin_locker(rwlock_list)) TIME_TEST("rwlock builtin locker (1test)", 0, dr, rbl1, length = list_length_test_builtin_locker_1test(rwlock_list)) TIME_TEST("rwlock builtin locker (cacheaddr)", 0, dr, rblc, length = list_length_test_builtin_locker_cacheaddr(rwlock_list)) TIME_TEST("rwlock builtin locker (1test/cacheaddr)", 0, dr, rbl1c, length = list_length_test_builtin_locker_1test_cacheaddr(rwlock_list)) printf("\n"); /* Suppress compiler warning */ if (length) length = 0; list_release(list); list_release(mutex_list); locker_release(mutex_locker); pthread_mutex_destroy(&mutex); list_release(rwlock_list); locker_release(rwlock_locker); pthread_rwlock_destroy(&rwlock); } if (errors) printf("%d/20 tests failed\n", errors); else printf("All tests passed\n"); return (errors == 0) ? EXIT_SUCCESS : EXIT_FAILURE; } #endif /* vi:set ts=4 sw=4: */